# Improving the Fermilab Booster Notchning Efficiency: Beam Losses and Radiation Levels

I.Tropin, N. Mokhov, A.Drozhdin Energy Deposition Department APC

## Outline

- Problem: Distributed beam losses in Booster beam line.
  Elevated radiation levels.
- Goal: Investigate variants to improve beam notching efficiency, decrease radiation levels (ALARA) in tunnel.
- Approach: Modification of kickers in section 5 or section 12 to localize beam losses in dedicated regions with appropriate shielding.
- Tools: Simulations with MARS and STRUCT codes.
- Results: Energy deposition in beam dump used in notchning, residual doses and star density in sump water around tunnel.
- Conclusion

### **Present situation:**

- Present situation: fast 1.08-m long kicker (notcher) located in Booster Long-5 straight section is used to remove 3 of 84 circulating bunches after pulse injection to generate abort gap.
- With magnetic field 72.5 Gauss kicker removes 87% of the 3-bunch intensity at 400 MeV:
  - 75% on pole tips of the focusing Booster magnets
  - 11% on the Long-6 collimators
  - 1% in the rest of ring

#### Problems:

- Elevated dose level in booster tower
- High residual doses on magnets and tunnel walls.

## **Radiation Limits and Design Constraints**

Residual dose rate on contact with materials inside tunnel

$$P_{\gamma} < 100 \, mrem/h = 1 \, mSv/h$$

Sump water activation:

$$\langle S \rangle_{gravel} < 4000 \, cm^{-3} \, s^{-1}$$

 Prompt dose equivalent above tunnel, 13.5 feet of dirt:

$$D_E < 5 \frac{mrem}{h} = 0.05 \frac{mSv}{h}$$



The Booster west tower starts in the center of Long-06.

MARS-15 model: Booster-06 and -07 sections. Booster intensity – 5.e12 ppp, repetition rate – 5Hz.



MARS-15 model: Booster-06 and -07 sections. Booster intensity – 5.e12 ppp, repetition rate – 5Hz.



### Section 6:Localization effect for prompt equivalent doze



Residual dose profiles, vertical cross section (30 days irradiation/1day cooling, mSv/hr).

### Section 6:Localization effect for prompt equivalent doze



Prompt dose, vertical cross section (mSv/hr).

## Layout of 12-13 sections of Booster tunnel.





Three notchers with field of B=62 Gauss. The aperture of Short-12 straight section should be increased to R>86mm to eliminate losses. This can be done by displace-ment of R66.5mm apertu-re (without BPM) by dX=20 mm. [46.5-86.5]mm

Red –  $30\pi$ , green -  $18\pi$ 

|                                                           |       | loss from 3 bunches |          |         |         | loss from circulating beam |         |         |
|-----------------------------------------------------------|-------|---------------------|----------|---------|---------|----------------------------|---------|---------|
| Radius of                                                 | time  | total               | FMAGD12, | between |         | total                      | between |         |
| apertur                                                   | shift | loss                | FMAGU13, | FMAGD12 | Dump-13 | loss                       | FMAGD12 | Dump-13 |
| Short-12                                                  |       |                     | DMAGU13  | FMAGU13 |         |                            | FMAGU13 |         |
| mm                                                        | nsec  | %                   | %        | %       | %       | %                          | %       | %       |
| Three long kickers with $L = 1.08m$ , $E_{kin} = 400 GeV$ |       |                     |          |         |         |                            |         |         |
| 76.5+9.35                                                 | 0     | 97.5                | -        | 5.5     | 91.2    | 1.11                       | -       | 0.85    |
| 66.5+9.35                                                 | 0     | 97.5                | -        | 22.1    | 74.7    | 1.11                       | -       | 0.85    |
| 66.5+9.35                                                 | 4     | 97.6                | -        | 21.3    | 75.5    | 1.15                       | -       | 0.92    |
| Six short kickers with $L = 0.54m$ , $E_{kin} = 400 GeV$  |       |                     |          |         |         |                            |         |         |
| 76.5+9.35                                                 | 0     | 98.1                | -        | 6.4     | 91.0    | 0.24                       | -       | 0.16    |
| 66.5+19.35                                                | 0     | 98.1                | -        | 5.6     | 90.9    | 0.24                       | -       | 0.22    |
| 66.5+9.35                                                 | 0     | 98.1                | -        | 25.8    | 71.7    | 0.24                       | -       | 0.16    |
| 66.5+9.35                                                 | 4     | 98.2                | -        | 23.1    | 74.4    | 0.23                       | -       | 0.21    |

#### PIP: ROOT based MARS15 model for Booster section 13:

Beam parameters: 700 MeV, Total intensity - 5.e12 ppp, repetition rate - 15Hz



Long-13: Residual dose on contact (30d/1d) mSv/h



Long-13: Prompt dose equivalent, mSv/h





Long-13: residual dose on contact (30d/1d) mSv/h







The wall thickness of the tunnel (Section A-A) is 14", floor - 16". Sections B-B and C-C wall thickness is 16", and Floor - 18".

# Energy deposition in absorption bar



# Energy deposition in absorption bar



Energy deposition in transverse cross section at the upstream end of bar

Maximum energy deposition in trasverse slice

Sump water: Average star density for 700 MeV beam immediately outside tunnel walls at longitudinal peak:



#### **Conclusions**

One vertical notcher removes 87% of 3-bunch intensity, with 75% loss at pole tip of Booster magnets, 11% at collimator, and 0.5% on the rest part of the ring.

•Using three horizontal notchers at Long-12, is possible to remove 98% at 400MeV and 97% at 700 MeV of 3-bunch intensity to the beam dump located at Long-13 straight section with increased aperture of Short-12 section to R87mm by aperture displacement to dX=20mm.